1. Назначение и область применения

Модульные агрегаты воздушного охлаждения МА-ВО.К (далее конденсаторы) предназначены для охлаждения и последующей конденсации хладагента, циркулирующего в замкнутой холодильной системе.

Конденсаторы могут использоваться совместно с воздухоохладителями компрессорно-испарительными типа ВКИ (ТУ 4864-048-40149153-03), а также в составе другого климатического и холодильного оборудования в качестве конденсатора (в компрессорно-конденсаторных агрегатах, в охладителях жидкости и т.д.).

Теплопроизводительность конденсатора в зависимости от типоразмера и используемых комплектующих находится в диапазоне 10...220 кВт.

Выбор холодильного агента определяется условиями эксплуатации конденсатора. Допускается использо-

вание любых хладагентов, не взаимодействующих с медью. Марки наиболее применяемых хладагентов приведены в разделе 5.

Конденсаторы предназначены для эксплуатации в районах с умеренным и холодным климатом и размещаются под навесом или в помещениях, где колебания температуры и влажности воздуха несущественно отличаются от колебаний на открытом воздухе и имеется свободный доступ наружного воздуха (УХЛ2 по ГОСТ 15150).

2. Конструкция и описание работы

Конденсатор состоит из медно-алюминиевого пластинчатого теплообменника и одного или нескольких осевых вентиляторов, формирующих воздушный поток для его охлаждения. Корпус конденсатора выполнен из оцинкованной стали и окрашен специальной водостойкой краской. Конденсатор выпускается в вертикальном и горизонтальном исполнениях.

Принцип действия конденсатора основан на выделении тепла в процессе конденсации, т.е. перехода горячего парообразного хладагента в жидкую фазу.

Конденсация происходит в трубках теплообменника в процессе непрерывной циркуляции холодильного агента в замкнутом контуре холодильной машины, в состав которой входит конденсатор. Отвод тепла осу-

ществляется через теплопередающую поверхность теплообменника, охлаждаемую принудительным воздушным потоком, формируемым осевыми вентиляторами.


Агрегаты сконструированы по модульному принципу, позволяющему наращивать теплопроизводительность путем увеличения числа вентиляторов, объединенных общим корпусом с теплообменником, имеющим соответствующую теплообменную поверхность.

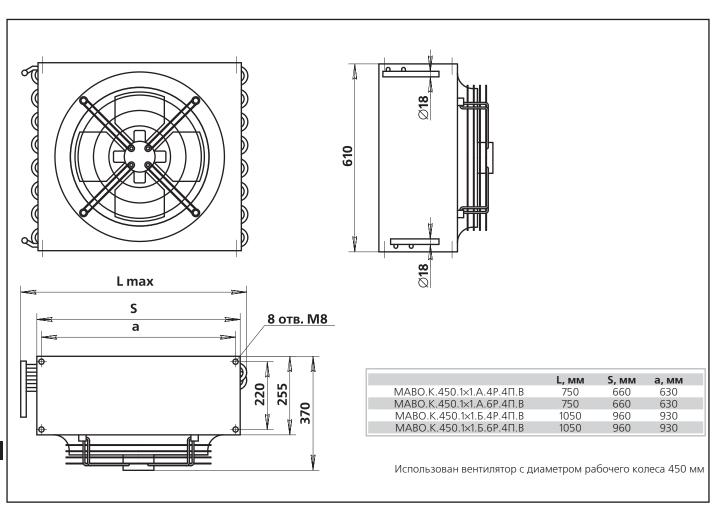
Принята следующая система обозначения конденсаторов:

Модульный агрегат воздушного охлаждения MABO.K.D.a×b.c.eP.fП.g
К — исполнение — «конденсатор»
D — диаметр рабочего колеса вентилятора в мм (450 или 630)
axb — компоновка вентиляторов (число рядовхчисло вентиляторов в ряду)
с — обозначение типоразмера фронтальной площади, через которую
прокачивает воздух один вентилятор.
При этом :
для $\mathbf{D} = 450$ мм типоразмер 600×600 мм² обозначен как \mathbf{A} ,
900×600 — как Б ;
для $\mathbf{D} = 630$ мм типоразмер 800×1000 мм 2 обозначен как \mathbf{A} ,
1000×1000 − как Б , 1200×1000 − как В
e — число рядов (P) трубок теплообменника по ходу движения воздуха
\mathbf{f} — число полюсов ($\mathbf{\Pi}$) вентилятора
g – рабочее положение конденсатора (B – вертикальное, Г – горизонтальное)

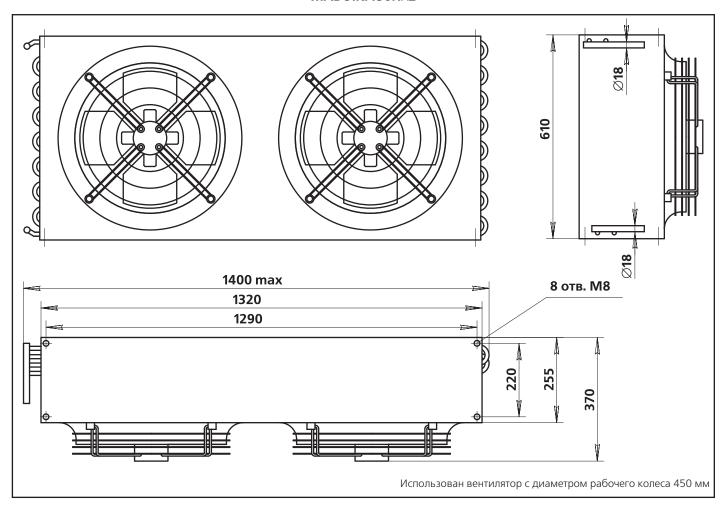
ВЕЗА

Внешний вид МАВО.К

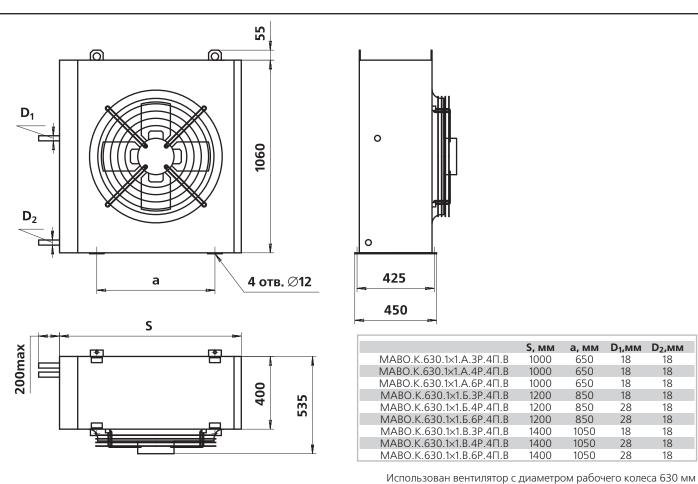
Двухвентиляторный одноконтурный MABO.К.630 в вертикальном исполнении



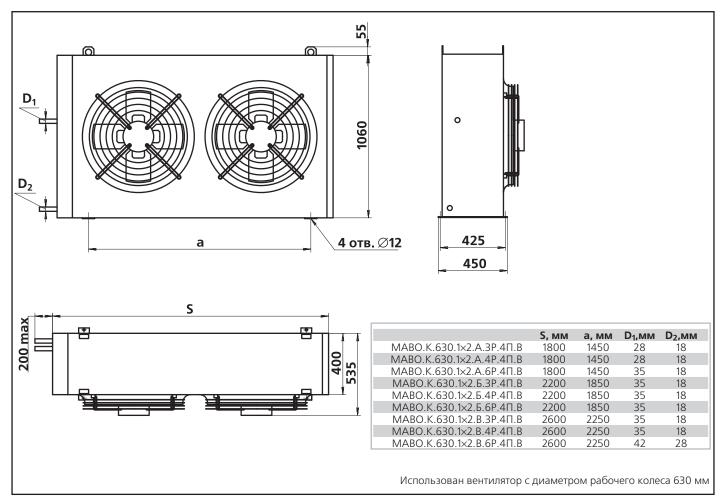
Четырехвентиляторный двухконтурный МАВО.К.630 в горизонтальном исполнении


3. Типоразмерный ряд и характеристики конденсаторов

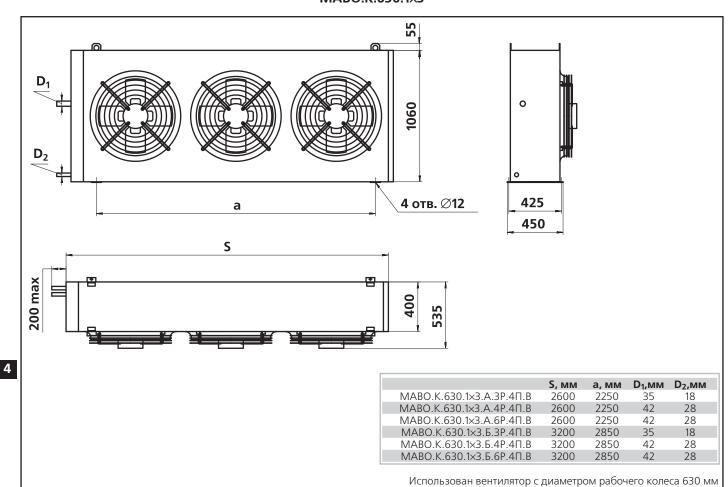
3.1. Конструктивные варианты MABO.K, выпускаемые по техническим условиям ТУ 4864-049-40149153-03

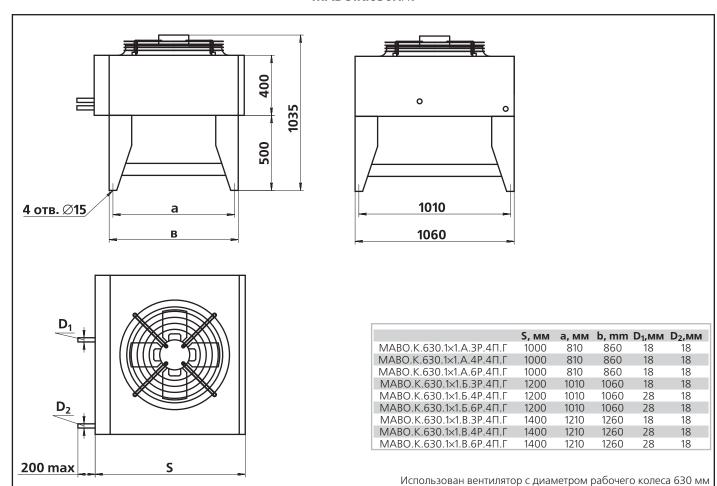

MABO.K.450.1×1

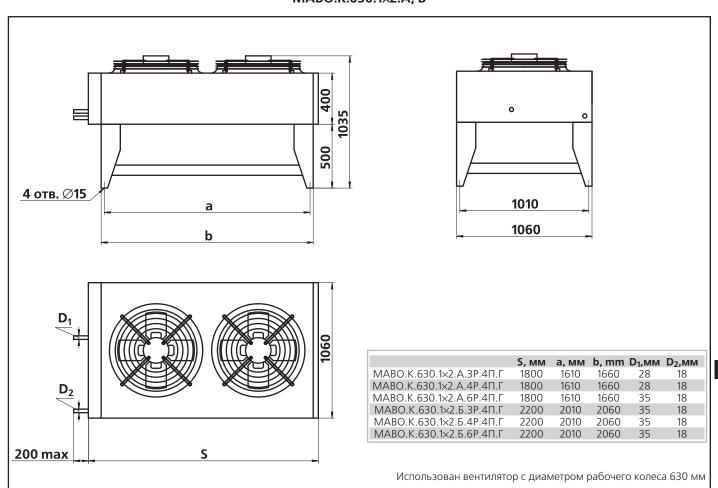
MABO.K.450.1×2



MABO.K.630.1×1

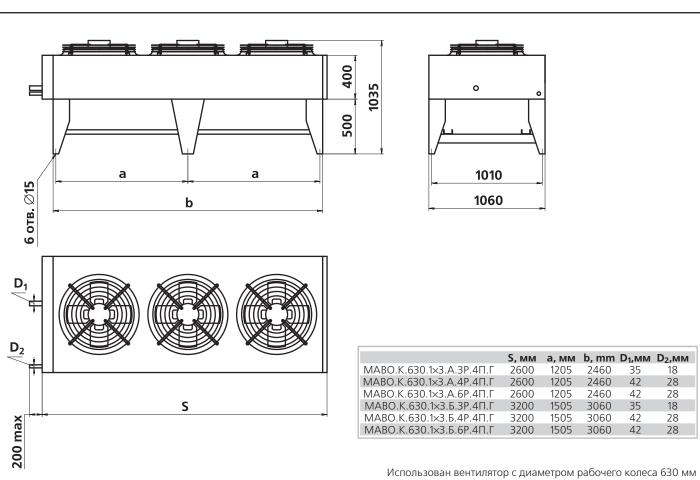



MABO.K.630.1×2

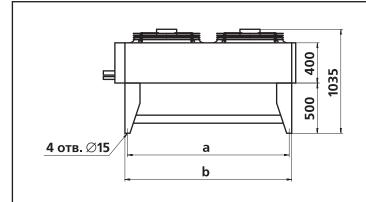

MABO.K.630.1×3

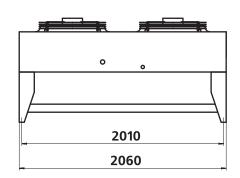
MABO.K.630.1×1

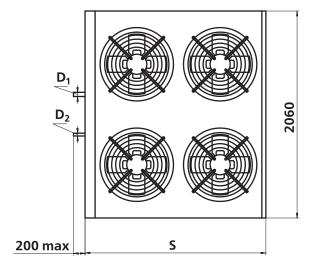

МАВО.К.630.1×2.А, Б


6

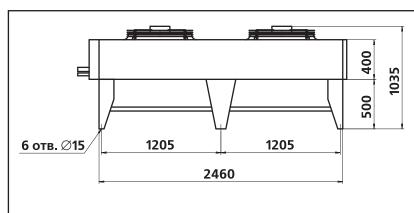
MABO.K.630.1×2.B

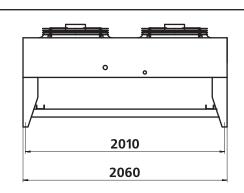


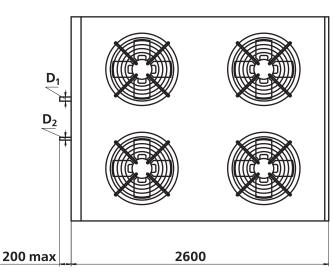

МАВО.К.630.1×3.А, Б



МАВО.К.630.2×2.А, Б



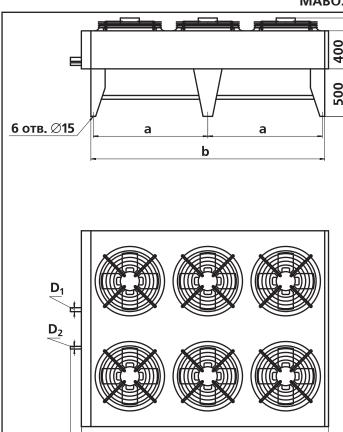

	S, мм	а, мм	b, mm	D ₁ *, мм	D ₂ *, мм
MABO.K.630.2×2.A.3P.4Π.Γ	1800	1610	1660	42(2×28)	28(2×18)
MABO.K.630.2×2.A.4P.4Π.Γ	1800	1610	1660	42(2×28)	28(2×18)
MABO.K.630.2×2.A.6P.4Π.Γ	1800	1610	1660	54(2×35)	35(2×18)
MABO.K.630.2×2.Б.3P.4Π.Γ	2200	2010	2060	42(2×28)	28(2×18)
MABO.K.630.2×2.Б.4P.4Π.Γ	2200	2010	2060	54(2×35)	35(2×18)
MABO.K.630.2×2.Б.6P.4Π.Γ	2200	2010	2060	54(2×35)	35(2×18)

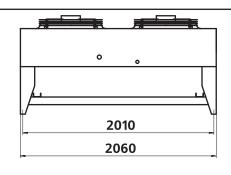

^{*} — в скобках указаны диаметры для двухконтурного исполнения

Использован вентилятор с диаметром рабочего колеса 630 мм

MABO.K.630.2×2.B

	D ₁ *, мм	D ₂ *, мм
MABO.K.630.2×2.B.3P.4Π.Γ	42(2×35)	28(2×18)
MABO.K.630.2×2.B.4P.4Π.Γ	54(2×35)	28(2×18)
MABO.K.630.2×2.B.6P.4Π.Γ	54(2×42)	28(2×28)


* — в скобках указаны диаметры для двухконтурного исполнения


Использован вентилятор с диаметром рабочего колеса 630 мм



MABO.K.630.2×3

1035

^{* —} в скобках указаны диаметры для двухконтурного исполнения Использован вентилятор с диаметром рабочего колеса 630 мм

3.2 Характеристики МАВО.К

200 max

Модульные агрегаты с диаметром вентилятора 450 мм

			MABO.K	450.1×1.		MABO.K	.450.1×2.
		А.3Р.4П.В	А.4Р.4П.В	Б.4Р.4П.В	Б.6Р.4П.В	А.4Р.4П.В	А.6Р.4П.В
Номинальная тепло-	треуг.	11,1	13,9	14,4	18,3	23,2	28,1
производительность, кВт	звезда	10,1	12	13,1	17,2	20,9	25
Расход	треуг.	4 500	4 500	5 200	4 850	9 000	8 000
воздуха, м³/час	звезда	3 750	3 200	4 450	4 050	7 500	6 400
Теплопередающая поверхность, м ²		30	45	45	67	62	94
Внутренний объем трубок теплообменника, л		4	5	5	8	7	10
Количество × мощность, кВт, электродвигателя		1×0,62	1×0,62	1×0,62	1×0,62	2×0,62	2×0,62
Масса, кг		45	50	55	60	75	85
Диаметры присоединительных	вход	18	18	18	18	18	18
патрубков, мм	выход	18	18	18	18	18	18
Эквивалентный уровень звукового	треуг.	51	51	51	51	54	54
давления на расстоянии 10 м, Lp, дБ(А)	звезда	48	48	48	48	51	51

Модульные агрегаты с диаметром вентилятора 630 мм, вертикальное исполнение

					MABO	D.K.630.	1×1.			
		А.3Р.4П.В	А.4Р.4П.В	А.6Р.4П.В	Б.3Р.4П.В	Б.4Р.4П.В	Б.6Р.4П.В	В.3Р.4П.В	В.4Р.4П.В	В.6Р.4П.В
Номинальная тепло-	треуг.	20,2	25,1	31,6	22	29	36,1	24,6	32,5	40,6
производительность, кВт	звезда	17,8	21,8	25,8	19,6	25,2	30,3	23	28,3	34,1
Расход	треуг.	10 800	10 200	9 100	11 500	11 000	10 100	11 900	11 500	10 800
воздуха, м³/час	звезда	8 400	7 900	6 700	9 100	8 600	7 800	10 400	9 100	8 400
Теплопередающая поверхность, м ²		50	66	99	62	83	124	74	99	149
Внутренний объем трубок теплообменника, л		7	9	14	8	11	16	10	13	19
Количество × мощность, кВт, электродвигателя		1×1,2	1×1,2	1×1,2	1×1,2	1×1,2	1×1,2	1×1,2	1×1,2	1×1,2
Масса, кг		95	100	110	100	105	120	105	115	125
Диаметры присоединительных	вход	18	18	18	18	28	28	18	28	28
патрубков, мм	выход	18	18	18	18	18	18	18	18	18
Эквивалентный уровень звукового	треуг.	57	57	57	57	57	57	57	57	57
давления на расстоянии 10 м, Lp, дБ(А)	звезда	50	50	50	50	50	50	50	50	50

RE3A	ĸ.
BE3A	,

					MABC).K.630.	1×2.			
		А.3Р.4П.В	А.4Р.4П.В	А.6Р.4П.В	Б.3Р.4П.В	Б.4Р.4П.В	Б.6Р.4П.В	В.3Р.4П.В	В.4Р.4П.В	В.6Р.4П.В
Номинальная тепло-	треуг.	40,3	50,3	63,1	45,4	58	74	51,2	65	82,1
производительность, кВт	звезда	35,5	43,6	51,5	40	50,3	62,1	47,6	56,5	68,8
Расход	треуг.	21 600	20 400	18 200	23 000	22 000	20 200	23 800	23 000	21 600
воздуха, м ³ /час	звезда	16 800	15 800	13 400	18 200	17 200	15 600	20 800	18 200	16 800
Теплопередающая поверхность, м ²		99	132	198	124	165	248	149	198	198
Внутренний объем трубок теплообменника, л		12	17	25	15	20	30	18	23	36
Количество × мощность, кВт, электродвигателя		2×1,2	2×1,2	2×1,2	2×1,2	2×1,2	2×1,2	2×1,2	2×1,2	2×1,2
Масса, кг		150	155	175	160	170	185	175	190	210
Диаметры присоединительных	вход	28	28	35	35	35	35	35	35	42
патрубков, мм	выход	18	18	18	18	18	18	18	18	28
Эквивалентный уровень звукового	треуг.	60	60	60	60	60	60	60	60	60
давления на расстоянии 10 м, Lp, дБ(А)	звезда	53	53	53	53	53	53	53	53	53

				MABO.K	.630.1×3.		
		А.3Р.4П.В	А.4Р.4П.В	А.6Р.4П.В	Б.3Р.4П.В	Б.4Р.4П.В	Б.6Р.4П.В
Номинальная тепло-	треуг.	60,1	74,2	93,7	70,4	87,2	110,3
производительность, кВт	звезда	52,8	64,5	76,6	62,2	75,7	92,5
Расход	треуг.	32 400	30 600	27 300	34 500	33 000	30 300
воздуха, м ³ /час	звезда	25 200	23 700	20 100	27 300	25 800	23 400
Теплопередающая поверхность, м ²		149	198	297	186	249	372
Внутренний объем трубок теплообменника, л		18	23	36	22	29	44
Количество × мощность, кВт, электродвигателя		3×1,2	3×1,2	3×1,2	3×1,2	3×1,2	3×1,2
Масса, кг		215	220	240	230	240	265
Диаметры присоединительных	вход	35	42	42	35	42	42
патрубков, мм	выход	18	28	28	18	28	28
Эквивалентный уровень звукового	треуг.	62	62	62	62	62	62
давления на расстоянии 10 м, Lp, дБ(А)	звезда	55	55	55	55	55	55

Модульные агрегаты с диаметром вентилятора 630 мм, горизонтальное исполнение

					MABO).K.630.	1×1.			
		А.ЗР.4П.Г	А.4Р.4П.Г	А.6Р.4П.Г				В.ЗР.4П.Г	В.4Р.4П.Г	В.6Р.4П.Г
Номинальная тепло-	треуг.	20,2	25,1	31,6	22	29	36,1	24,6	32,5	40,6
производительность, кВт	звезда	17,8	21,8	25,8	19,6	25,2	30,3	23	28,3	34,1
Расход	треуг.	10 800	10 200	9 100	11 500	11 000	10 100	11 900	11 500	10 800
воздуха, м³/час	звезда	8 400	7 900	6 700	9 100	8 600	7 800	10 400	9 100	8 400
Теплопередающая поверхность, м ²		50	66	99	62	83	124	74	99	149
Внутренний объем трубок теплообменника, л		7	9	14	8	11	16	10	13	19
Количество x мощность, кВт, электродвигателя		1×1,2	1×1,2	1×1,2	1×1,2	1×1,2	1×1,2	1×1,2	1×1,2	1×1,2
Масса, кг		95	100	110	100	105	120	105	115	125
Диаметры присоединительных	вход	18	18	18	18	28	28	18	28	28
патрубков, мм	выход	18	18	18	18	18	18	18	18	18
Эквивалентный уровень звукового	треуг.	57	57	57	57	57	57	57	57	57
давления на расстоянии 10 м, Lp, дБ(А)	звезда	50	50	50	50	50	50	50	50	50

					MABO).K.630.	1×2.			
		А.3Р.4П.Г	А.4Р.4П.Г	А.6Р.4П.Г	Б.3Р.4П.Г	Б.4Р.4П.Г	Б.6Р.4П.Г	В.3Р.4П.Г	В.4Р.4П.Г	В.6Р.4П.Г
Номинальная тепло-	треуг.	40,3	50,3	63,1	45,4	58	74	51,2	65	82,1
производительность, кВт	звезда	35,5	43,6	51,5	40	50,3	62,1	47,6	56,5	68,8
Расход	треуг.	21 600	20 400	18 200	23 000	22 000	20 200	23 800	23 000	21 600
воздуха, м³/час	звезда	16 800	15 800	13 400	18 200	17 200	15 600	20 800	18 200	16 800
Теплопередающая поверхность, м ²		99	132	198	124	165	248	149	198	198
Внутренний объем трубок теплообменника, л		12	17	25	15	20	30	18	23	36
Количество × мощность, кВт, электродвигателя		2×1,2	2×1,2	2×1,2	2×1,2	2×1,2	2×1,2	2×1,2	2×1,2	2×1,2
Масса, кг		150	155	175	160	170	185	175	190	210
Диаметры присоединительных	вход	28	28	35	35	35	35	35	35	42
патрубков, мм	выход	18	18	18	18	18	18	18	18	28
Эквивалентный уровень звукового	треуг.	60	60	60	60	60	60	60	60	60
давления на расстоянии 10 м, Lp, дБ(А)	звезда	53	53	53	53	53	53	53	53	53

ІЙ РЯД И ХАРАКТЕРИСТИКИ КОНДЕНСАТОРОВ

				MABO.K	630.1×3.		
		А.3Р.4П.Г	А.4Р.4П.Г	А.6Р.4П.Г	Б.3Р.4П.Г	Б.4Р.4П.Г	Б.6Р.4П.Г
Номинальная тепло-	треуг.	60,1	74,2	93,7	70,4	87,2	110,3
производительность, кВт	звезда	52,8	64,5	76,6	62,2	75,7	92,5
Расход	треуг.	32 400	30 600	27 300	34 500	33 000	30 300
воздуха, м³/час	звезда	25 200	23 700	20 100	27 300	25 800	23 400
Теплопередающая поверхность, м ²		149	198	297	186	249	372
Внутренний объем		18	23	36	22	29	44
трубок теплообменника, л		10	23	50	22	23	
Количество × мощность,		3×1,2	3×1,2	3×1,2	3×1,2	3×1,2	3×1,2
кВт, электродвигателя		3/1,2	3/1,2	3/1,2	3/1,2	3/1,2	3/1,2
Масса, кг		215	220	240	230	240	265
Диаметры присоединительных	вход	35	42	42	35	42	42
патрубков, мм	выход	18	28	28	18	28	28
Эквивалентный уровень звукового	треуг.	62	62	62	62	62	62
давления на расстоянии 10 м, Lp, дБ(А)	звезда	55	55	55	55	55	55

					MABC).K.630.	2×2.			
		А.3Р.4П.Г	А.4Р.4П.Г	А.6Р.4П.Г	Б.3Р.4П.Г	Б.4Р.4П.Г	Б.6Р.4П.Г	В.3Р.4П.Г	В.4Р.4П.Г	В.6Р.4П.Г
Номинальная тепло-	треуг.	80,7	100,6	126,1	90,8	115,9	148	102,4	130	164,1
производительность, кВт	звезда	71,1	87,2	103,8	80	100,6	124,2	95	112,9	137,6
Расход	треуг.	43 200	40 800	36 400	46 000	44 000	40 400	47 600	46 000	43 200
воздуха, м³/час	звезда	33 600	31 600	26 800	36 400	34 400	31 200	41 400	34 600	33 600
Теплопередающая поверхность, м ²		198	264	396	248	330	496	298	396	596
Внутренний объем трубок теплообменника, л		27	35	52	33	42	63	38	49	74
Количество × мощность, кВт, электродвигателя		4×1,2	4×1,2	4×1,2	4×1,2	4×1,2	4×1,2	4×1,2	4×1,2	4×1,2
Масса, кг		285	290	325	295	315	350	330	330	370
Диаметры присоединительных	вход								54(35)	
патрубков, мм	выход	28(18)	28(18)	35(18)	28(18)	35(18)	35(18)	28(18)	35(18)	35(18)
Эквивалентный уровень звукового	треуг.	63	63	63	63	63	63	63	63	63
давления на расстоянии 10 м, Lp, дБ(А)	звезда	56	56	56	56	56	56	56	56	56

				MABO.K	.630.2×3.		
		А.3Р.4П.Г	А.4Р.4П.Г	А.6Р.4П.Г	Б.3Р.4П.Г	Б.4Р.4П.Г	Б.6Р.4П.Г
Номинальная тепло-	треуг.	120,2	148,4	187,4	140,9	174,3	220,6
производительность, кВт	звезда	105,6	128,9	153,1	124,4	151,3	185
Расход	треуг.	64 800	61 200	54 600	69 000	66 000	66 600
воздуха, м³/час	звезда	50 400	47 400	40 200	54 600	51 600	46 800
Теплопередающая поверхность, м ²		297	397	594	372	498	744
Внутренний объем трубок теплообменника, л		39	50	75	47	60	93
Количество × мощность, кВт, электродвигателя		4×1,2	4×1,2	4×1,2	4×1,2	4×1,2	4×1,2
Масса, кг		385	405	445	415	440	490
Диаметры присоединительных патрубков, мм	вход выход	54(35) 35(18)	54(35) 35(18)	64(42) 42(28)	54(35) 35(18)	54(35) 35(18)	64(42) 42(28)
Эквивалентный уровень звукового	треуг.	65	65	65	65	65	65
давления на расстоянии 10 м, Lp, дБ(А)	звезда	58	58	58	58	58	58

треуг. — обмотки электродвигателя вентилятора соединены треугольником; звезда — обмотки электродвигателя вентилятора соединены звездой; В скобках указаны диаметры патрубков для двухконтурного исполнения теплообменника. Использованы вентиляторы фирмы «ZIEHL-ABEGG», Германия.

Расход воздуха и номинальная теплопроизводительность указаны для следующих условий:

- температура паров хладагента на входе в конденсатор80 °C;

При использовании вентиляторов с мощностью двигателя отличной от указанной в таблицах соответственно изменится и теплопроизводительность конденсатора.

10

Характеристики вентиляторов

Вентилятор 450								
Управляющее напряжение		400В(380В)/3/50Гц						
Диаметр рабочего колеса, мм		450						
Скорость вращения рабочего колеса, об/мин	треуг.	1340						
	звезда	1050						
мощность электродвигателя, кВт		0,62						
максимальный ток, А		1,1						

Вентилятор 630								
Управляющее напряжение		400В(380В)/3/50Гц						
Диаметр рабочего колеса, мм		630						
Скорость вращения рабочего колеса, об/мин	треуг.	1335						
	звезда	1010						
мощность электродвигателя, кВт		1,2						
максимальный ток, А		2,2						

треуг. — обмотки электродвигателя вентилятора соединены треугольником; звезда — обмотки электродвигателя вентилятора соединены звездой.

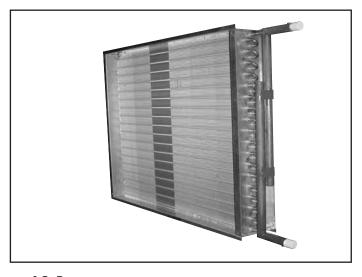
Переключение соединения обмоток «треугольник — звезда» позволяет ступенчато изменять расход воздуха и, соответственно, теплопроизводительность конденсатора. Кроме того, конструкция двигателей применяемых вентиляторов допускает плавную регулировку воздушного потока при изменении питающего напряжения.

3.3. Показатели надежности МАВО.К

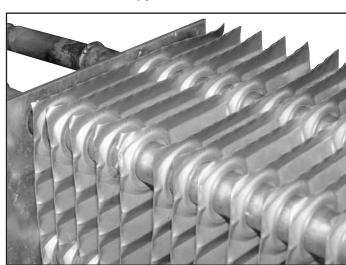
Показатели надежности конденсаторов имеют следующие значения:

- срок службы, год, не менее10.
- допустимый срок сохраняемости до ввода в эксплуатацию составляет два года.

4. Функциональные элементы МАВО.К


4.1. Теплообменник

В состав конденсаторов входят высокоэффективные пластинчатые медно-алюминиевые теплообменники типа ВНВ, выпускаемые по техническим условиям ТУ 4863-016-40149153-98.


Теплопередающая поверхность этих теплообменников представляет собой от 3-х до 6-ти рядов медных труб, оребренных напрессованными на них гофрированными пластинами из алюминиевой фольги, образующими щелевые каналы для прохода воздуха.

Стандартный шаг оребрения составляет 2,5 мм, однако при использовании конденсатора в пыльной атмосфере по специальному заказу возможно изготовление теплообменников с шагом до 4-х мм. Возможна также поставка теплообменников с медным оребрением.

Внешний вид теплообменника

Алюминиевые пластины на медных трубках теплообменника

4.2. Вентилятор

Конденсаторы комплектуются осевыми вентиляторами фирмы «ZIEHL-ABEGG» (Германия), с не требующими обслуживания электродвигателями, рассчитанными на напряжение 380 В, 50 Гц с классом защиты ІР 54.

ВЕЗА

Внешний вид вентилятора в составе МАВО.К

По желанию заказчика допустимо применение вентиляторов других типов, например, Nicotra AFK-630, Rotorex-630 S8 PACAU, FTDA-063, BO-12-303-6,3.

Осевой вентилятор в составе МАВО.К

5. Рекомендации по выбору конденсатора

Принятые обозначения:

 ${\bf Q}_{{\bf K}\,{\bf M}{\bf M}{\bf H}}-$ минимально необходимая теплопроизводительность конденсации заданной системы охлаждения;

 $\mathbf{Q}_{\kappa\,\mathsf{ном}}-$ номинальная теплопроизводительность конденсатора;

 ${f Q}_{{f x}{f n}}$ — заданная холодопроизводительность системы охлаждения;

 ${f t}_{{f kohd}}\,\,$ — температура конденсации хладагента;

 ${f t}_{{f k}{f u}{f n}}$ — температура кипения хладагента;

 ${f t}_{{f BO3D}}$ — температура воздуха, охлаждающего конденсатор (температура окружающей среды);

 $\Delta t = t_{\text{конд}} - t_{\text{возд}}$, располагаемый температурный напор.

Критерием выбора конденсатора является соотношение:

$Q_{K \text{ HOM}} \ge Q_{K \text{ MUH}}$

12

где: $\mathbf{Q}_{\kappa \ \text{мин}} = \mathbf{Q}_{\mathbf{x} \mathbf{n}} \mathbf{x} \mathbf{k}_1 \mathbf{x} \mathbf{k}_2 \mathbf{x} \mathbf{k}_3 \mathbf{x} \mathbf{k}_4 \mathbf{x} \mathbf{k}_5$,

 ${\bf k_1}$ — определяется типом компрессора и режимом его работы (см. табл. 1а и 16);

k₂ — определяется **Δt** (см. табл. 2);

 $\mathbf{k_3}$ — определяется $\mathbf{t_{возд}}$ (см. табл. 3);

 ${f k_4}$ — определяется маркой хладагента (см. табл. 4);

 ${f k_5}$ — определяется месторасположением конденсатора относительно уровня моря (см. табл. 5).

Таблица 1a. Коэффициент ${f k_1}$ для герметичных и полугерметичных компрессоров.

t _{кип} , °С						t _{конд} , °С					
	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10
30	1,64	1,56	1,48	1,42	1,37	1,32	1,28	1,23	1,20	1,16	1,13
35	1,69	1,61	1,53	1,46	1,40	1,35	1,31	1,26	1,22	1,19	1,15
40	1,76	1,66	1,57	1,50	1,44	1,38	1,34	1,29	1,25	1,21	1,18
45	1,86	1,73	1,62	1,54	1,48	1,43	1,37	1,33	1,28	1,24	1,21
50	2,03	1,83	1,69	1,60	1,53	1,48	1,42	1,37	1,32	1,28	1,23

Таблица 16. Коэффициент ${\bf k_1}$ для компрессоров с внешним приводом.

t _{кип} , °С						t _{конд} , °С					
	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10
30	*	1,36	1,31	1,27	1,24	1,20	1,18	1,15	1,13	1,10	1,08
35	*	1,41	1,36	1,32	1,28	1,24	1,21	1,18	1,15	1,13	1,11
40	*	1,44	1,40	1,36	1,31	1,27	1,24	1,21	1,18	1,15	1,13
45	*	*	1,44	1,41	1,35	1,31	1,27	1,24	1,21	1,18	1,15
50	*	*	*	1,45	1,39	1,35	1,31	1,27	1,24	1,21	1,17

* - диапазон выходит за область применения одноступенчатого компрессора

Таблица 2. (**k**₂).

Δt, °C											
k_2	1,50	1,36	1,24	1,15	1,07	1,00	0,94	0,88	0,84	0,79	0,76

Таблица 3. (**k**₃).

t _{noon} °C	20	25	30	35	40
•возді			50	55	-10
k ₃	0,96	0,98	1,00	1,02	1,04

монтаж и эксплуатация маво.к

Таблица 4. (**k₄**).

Хладагент	R 22	R 134 A	R 404 A	
k ₄	1	1,02	1,04	

Таблица 5. (**k**₅).

Высота над уровнем моря	0	500	1000	1500
k ₅	1,0	1,04	1,07	1,11

Пример подбора конденсатора

Исходные данные:

- тип компрессораполугерметичный;
- температура кипения хладагентаминус 20 °C;

- местонахождение конденсатора относительно уровня моря . .0 м (г. Москва);
- рабочее положениегоризонтальное.
- **1.** По таблицам 1 5 определяем коэффициенты **k₁...k₅:**

 $\mathbf{k_1} = \mathbf{1,48} - \mathbf{c}$ м. табл. 1а;

 $k_2 = 1,15$ (для $\Delta t = 45 - 32 = 13 °C) — см. табл. 2;$

 $k_3 = 1,01$ (берется как среднеарифметическое значений k_3 для температур 30 и 35 °C) — см.табл.3;

 $k_4 = 1 -$ см. табл. 4;

 $\mathbf{k_5} = \mathbf{1} - \text{см. табл. 5}.$

- 2. Производим расчет минимально необходимой теплопроизводительности конденсации:
 - $Q_{KMMH} = 55 \times 1.48 \times 1,15 \times 1,15 \times 1,01 \times 1 \times 1 = 94,5 \text{ KBT};$
- 3. Выбираем конденсатор из таблиц раздела 3.2:

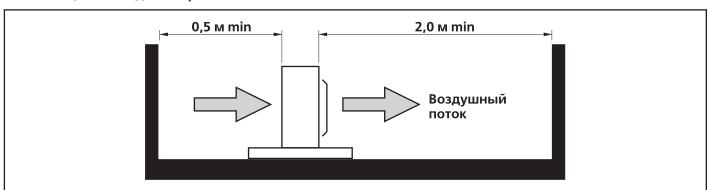
MABO.K.630.2×2.A.4P.4Π.Γ \rightarrow Q_{κ HOM} = 100,6 κBτ;

MABO.K.630.1×3.Б.6Р.4Π.Γ \rightarrow Q_{K HOM} = 110,3 κBτ.

С учетом производственных запасов по теплопроизводительности выбираем конденсатор

МАВО.К.630.1х3.Б.6Р.4П.Г.

6. Монтаж и эксплуатация МАВО.К


6.1. Рекомендации по монтажу конденсаторов

При размещении конденсатора необходимо обеспечить условия формирования воздушного потока. На рисунке на примере конденсатора в вертикальном исполнении указаны минимально допустимые расстояния между конденсатором и плоскостями перпендикулярными воздушному потоку. Те же условия должны быть обеспечены при монтаже конденсаторов в горизонтальном исполнении.

При уличном размещении должен быть предусмотрен навес, исключающий прямое попадание воды на конденсатор.

Конденсаторы крепятся к полу, стене, крыше, металлической раме и т.п. простыми или анкерными болтами через специальные отверстия в ножках (горизонтальные конденсаторы) или «лапах» (вертикальные).

Размещение конденсаторов

6.2. Эксплуатация и техническое обслуживание конденсаторов

В процессе эксплуатации следует не реже одного раза в год очищать рабочую поверхность теплообменника со стороны фронтальной поверхности. Если конденсатор расположен на улице, рекомендуется проводить дополнительную очистку в начале и конце летне-

го сезона. Для очистки использовать промышленный пылесос, сжатый воздух или теплую воду (не свыше 30 °C) с добавлением моющих средств. Очистку производить только при отключенном электродвигателе вентилятора.

13

ОПРОСНЫЙ ЛИСТ НА ПРОЕКТИРОВАНИЕ И ИЗГОТОВЛЕНИЕ ВОЗДУШНЫХ КОНДЕНСАТОРОВ МАВО.К

отправлять в техотдел фирмы «BE3A» факс: 626-99-02, e-mail: veza@veza.ru Контактное лицо: Организация: _____ Регион/город: ______ Тел./факс: _____ Дата: _____ РАСЧЕТНЫЕ ПАРАМЕТРЫ АГРЕГАТА Параметры работы холодильной машины: Холодопроизводительность установки, кВт: ______ Температура испарения хладагента, °С: _____ Температура конденсации хладагента, °C: _____ Хладагент, наименование: ___ Параметры окружающего воздуха: Температура воздуха, охлаждающего конденсатор, °C: ______ Высота над уровнем моря, м: _____ ИСПОЛНЕНИЕ АГРЕГАТА И ДОПОЛНИТЕЛЬНЫЕ ВОЗМОЖНОСТИ КОМПЛЕКТАЦИИ Положение агрегата: вертикальное горизонтальное Деревянная упаковка (обрешетка, защищающая при транспортировке) Поставка без вентиляторов (для комплектации заказчиком собственными вентиляторами) Двухконтурное исполнение гидравлического тракта

ВНИМАНИЕ!

Ответственность за заполнение опросного листа несет заказчик!

Допускается указывать название любого импортного аналога с информацией об изготовителе, для подбора агрегата производства фирмы «BE3A»

32